Arrival Time Prediction

Brandon Houghton, Kenji Yonekawa 08-537 - Fei Fang

Background

Motivation

- High demand for bus arrival prediction
 - + 25,000 installs in Pittsburgh alone
 - \circ Consistent daily useage
- Inefficiency of bus routes
- Lots of available data

Motivation

- High demand for bus arrival prediction
- Inefficiency of bus routes
 - Higher Utilization drives efficiency
 - Real-Time tracking can inform route changes
 - \circ $\,$ Delay cited as number one deterrent $\,$
 - \circ $\,$ Missing bus due to inaccurate real time info was number three $\,$
- Lots of available data

Motivation

- High demand for bus arrival prediction
- Inefficiency of bus routes
- Lots of available data
 - \circ GPS Bus location tracking
 - \circ $\,$ Passengers track stops within app $\,$
 - \circ Real-time traffic estimation
 - \circ Weather, Events, etc.

Related Work

• Multiple studies done

- Y. Bin and Y. Zhongzhen and Y. Baozhen, "Bus Arrival Time Prediction Using Support Vector Machines", 2006
- W. Treethidtaphat, W. Pattara-Atikom, and S. Khaimook, "Bus Arrival Time Prediction at Any Distance of Bus Route Using Deep Neural Network Model", 2017
- J. Lei, D. Chen, F. Li, Q. Han, S. Chen, L. Zeng, and M. Chen, "A Bus Arrival Time Prediction Method Based on GPS position and Real-time Traffic Flow", 2017
- P. Zhou and Y. Zheng and M. Li, "How Long to Wait? Predicting Bus Arrival Time With Mobile Phone Based Participatory Sensing", 2014

• Problems

- Often use erroneous location tracking
- \circ $\,$ Based on a couple of days of data collection $\,$
- Different setting used (location, time, data)

Data Set

- PAT TrueTime API
 - \circ $\,$ GPS of bus location $\,$
 - \circ Updates every 10 seconds
 - \circ Arrival Estimates
- Weather API
 - \circ Precipitation, temperature, wind
 - \circ $\,$ Updates every hour $\,$

Stored in GCP

Evaluation

- Limited Horizon
 - \circ $\,$ Riders not interested in accuracy after 15 minutes $\,$
 - \circ Buses can change routes
- Mean Absolute Percentage Error
 - \circ Most common
 - \circ $\,$ Easy to compare

$$MAPE = \frac{\sum_{t=1}^{n} |(A_t - F_t)/A_t|}{n}$$

Evaluation

- Previous approaches don't generalize well
- Pittsburgh is much more diverse

Use Velocity Instead of Time

- Errors do not accumulate
- Velocity

Qualitative Results

- Linear Model
 - \circ $\,$ Highly dependent on number of bins $\,$
- Tree Based Model
 - \circ $\,$ Does not generalize well to new month of data $\,$
- Mixture Models
 - Feature selection was overfitting validation set

Model Refinement - Tree Segmentation

Model Refinement - Linear Interpolation

Model Refinement - External Observations

Model Refinement - Momentum Model

Model Refinement - Meta Model

Evaluation Setup

- Results on one Route (61C) that had the most data.
- Train data: March 2018: 155,398 data points
- Test Data: April 2018: 101,504 data points
- True label: future data acquired from PAT's API

Evaluation Results

#	Model name PAT's prediction model	Mean Absolute Percentage Error (MAPE)
1	Linear model	28.48%
2	Piecewise linear model	23.84%
3	Decision tree linear model	22.70%
4	Piecewise linear mixture model	18.53%
5	Decision tree with linear mixture model	15.60%
6	Piecewise linear model with momentum	12.25%

Largely affected by historic data. (slope, intercept becomes negative) Haven't figured out optimal prediction model

Future Work

- Add other data to aid prediction
 - Traffic data from Google's Real Time Traffic
 - \circ Class schedule for local colleges
 - \circ Holidays and Events
- Provide our contribution as an API or incorporate with smartphone applications
 - Allow applications to integrate improved data without changing apps

Summary

- We tackled the societal challenge of predicting bus arrival time
- Evaluated existing research approaches
- Benchmarked existing API
- Developed and evaluated new approach
- New approach outperforms existing API

Thanks for listening!

Reference

Photo Credits: https://www.nextpittsburgh.com/city-design/port-authority-rolls-out-real-time-bus-tracking/

Y. Bin and Y. Zhongzhen and Y. Baozhen, "Bus Arrival Time Prediction Using Support Vector Machines", 2006

W. Treethidtaphat, W. Pattara-Atikom, and S. Khaimook, "Bus Arrival Time Prediction at Any Distance of Bus Route Using Deep Neural Network Model", 2017

J. Lei, D. Chen, F. Li, Q. Han, S. Chen, L. Zeng, and M. Chen, "A Bus Arrival Time Prediction Method Based on GPS position and Real-time Traffic Flow", 2017

P. Zhou and Y. Zheng and M. Li, "How Long to Wait? Predicting Bus Arrival Time With Mobile Phone Based Participatory Sensing", 2014

Z. Wall, D. J. Dailey, "An Algorithm for Predicting the Arrival Time of Mass Transit Vehicles Using Automatic Vehicle Location Data", Transportation Research Board 78th Annual Meeting January 10–14, ₂₃ 1999